Las 20 habilidades imprescindibles de los científicos de datos para conseguir trabajos de ciencia de datos

Desde que los datos se apoderaron del mundo empresarial, los científicos de datos siempre están bajo demanda. Y lo que hace que este trabajo sea mucho más lucrativo es la escasez de científicos de datos altamente capacitados. Las empresas están dispuestas a desprenderse de gran parte de sus ingresos con el científico de datos adecuado. Sin embargo, para en Data Scientist en organizaciones de renombre, debe mostrarles por qué es la mejor opción para su negocio. No es de extrañar que esto requiera una creatividad suprema y un montón de habilidades científicas de datos adecuadas.

Seremos más específicos. ¿Por qué las empresas prefieren currículos con habilidades excepcionales en ciencia de datos? Después de todo, lo único que les importa son los ingresos. La cuestión es que los científicos de datos son la razón por la que las industrias globales están llegando a muchas más audiencias que antes.

Es el trabajo de estos profesionales dar sentido a los datos aleatorios y darles una perspectiva empresarial. Pueden hacer o deshacer el alcance global de una empresa. Por lo tanto, las corporaciones líderes como las compañías Fortune 1000 siempre buscan habilidades científicas de datos altamente profesionales.

Habilidades imprescindibles para los científicos de datos

Los trabajos de ciencia de datos requieren un conjunto diverso de habilidades y dominio de dominios críticos como matemáticas, análisis, resolución de problemas, etc. No existe un conjunto garantizado de habilidades seleccionadas de científicos de datos que sean suficientes para cada puesto. Cada trabajo requiere diferentes criterios mientras se mantienen algunos fundamentos simples. A continuación, le presentamos las 20 habilidades de ciencia de datos que pueden ayudarlo a adaptarse a casi cualquier puesto.

Educación

La educación es uno de los factores principales en función de los cuales las corporaciones seleccionan a sus solicitantes de científicos de datos. Por mucho que nos guste hablar sobre cómo los no graduados como Mark Zuckerberg o Steve Jobs han dado forma al mundo actual, todos enfatizaremos la educación mientras pedimos calificaciones de científicos de datos. Sin embargo, puede obtener puestos respetados incluso sin un título universitario, dado que ha adquirido habilidades excepcionales como científico de datos por su cuenta.

img para la educación

1. Título avanzado

Aparte de algunas excepciones, la mayoría de los científicos de datos están equipados con títulos de educación superior avanzados. Según fuentes confiables , alrededor del 88% de los científicos de datos tienen al menos una maestría, mientras que el 46% de ellos tienen un doctorado. No debería sorprenderle ver títulos tan avanzados entre las habilidades habituales de ciencia de datos.

Los trabajos de ciencia de datos son uno de esos pocos puestos donde los títulos avanzados casi siempre son obligatorios. Si desea solidificar sus calificaciones de científico de datos, le recomendamos que obtenga un mínimo de una licenciatura en campos como Ciencias de la Computación, Matemáticas, Ciencias Físicas o Estadística.

Un título en cualquiera de estas disciplinas le mostrará a sus empleadores que tiene una comprensión fundamental de las habilidades básicas de los científicos de datos como Big Data, Estadísticas, Modelado, etc. Si ya posee uno de estos títulos, le recomendamos que considere continuar con la educación superior para aumentar sus posibilidades de obtener un puesto de científico de datos de primer nivel.

2. Certificaciones

La mayoría de las organizaciones reconocidas evalúan las certificaciones bastante bien al verificar las calificaciones científicas de datos de sus empleados potenciales. Las certificaciones entran en juego donde terminan los títulos avanzados. Dado que es probable que haya un número significativo de candidatos que tengan al menos una especialización en una de las disciplinas mencionadas anteriormente, es solo a través de certificaciones que los entrevistadores suelen sopesar a sus posibles científicos de datos.

Puede encontrar una bastante aquí, tanto en línea como físicas, que pueden ayudarlo en sus habilidades de ciencia de datos de manera mucho más efectiva. Lo alentamos a tomar los exámenes de certificación que le interesan y aprender algo de ellos.

Quizás, podría usar el conocimiento que obtuvo de un examen de certificación en particular y construir algo productivo. De esta manera, no solo tendrá que preocuparse por obtener trabajos de ciencia de datos prestigiosos, sino que también tendrá una ventaja competitiva sobre sus compañeros.

Pensamiento crítico

El pensamiento crítico es la capacidad de analizar hechos obvios e inferir información valiosa de ellos. Esta es una de las habilidades esenciales para los científicos de datos porque, como científico de datos, a menudo trabajará con toneladas de datos y será necesario modelarlos en ideas comerciales rentables. A menudo vemos organizaciones que contratan personas con habilidades científicas de datos aparentemente superficiales, pero que poseen habilidades excepcionales de pensamiento crítico.

pensamiento crítico para los científicos de datos

3. Resolución de problemas y análisis de riesgos

Los científicos de datos deben mantener excelentes habilidades para resolver problemas, ya que de lo contrario, son de poco valor para las corporaciones. Esta es una de esas habilidades de científico de datos que probablemente no podrá aprender usted mismo. En cambio, debe desarrollarse desde una edad temprana y, a menudo, se configura durante la universidad. Como científico de datos, es muy probable que se enfrente a nuevos problemas todos los días.

Para hacer frente a tales situaciones, el apetito por resolver problemas del mundo real es imprescindible. El análisis de riesgos es un tema complejo que, al contrario de la resolución de problemas, se puede aprender si se le dedica suficiente tiempo. Este es el arte de calcular los riesgos asociados con modelos comerciales específicos.

Dado que a menudo será responsable de diseñar e implementar los modelos comerciales de su empresa, la responsabilidad de evaluar sus factores de riesgo también recae sobre su hombro. Sin las habilidades adecuadas de análisis de riesgos, es probable que te equivoques de vez en cuando como científico de datos, lo que fácilmente puede resultar en que te despidan.

4. Mejora de procesos

La mayoría de los trabajos de ciencia de datos que vemos hoy en día requieren que sus empleados mejoren los procesos comerciales heredados como parte de su trabajo. Es su papel como científico de datos dedicarse a encontrar la mejor solución posible a los problemas comerciales y optimizarlos tanto como pueda.

Sin las habilidades adecuadas de pensamiento crítico y las habilidades profesionales de los científicos de datos, esto puede convertirse en una tarea bastante desalentadora muy rápidamente. Le sugerimos que dedique una gran parte de su tiempo a aprender cómo los profesionales de la ciencia de datos abordan esta tarea y crean enfoques personalizados para la mejora de procesos.

Si puede mostrarle a su empleador potencial la capacidad de mejorar sus modelos y estrategias comerciales actuales, es probable que obtenga el trabajo con bastante rapidez. Sin embargo, si ni siquiera puede mejorar las soluciones existentes, es poco probable que las empresas estén convencidas de que puede curar los procesos comerciales futuros.

5. Agudeza empresarial

Una sólida comprensión de la industria en la que trabajará y las respectivas oportunidades comerciales que ofrece es una de las habilidades muy importantes para los científicos de datos. Sin comprender las posibilidades comerciales, es casi imposible diseñar soluciones comerciales exitosas.

Todas las organizaciones a las que solicite evaluarán las grandes ideas comerciales de manera muy positiva. A menudo vemos personas que invierten la mayor parte de su tiempo en aprender herramientas y algoritmos, pero muy pocos tienden a desarrollar sus propias ideas comerciales. Esta es una de las principales diferencias entre un científico de datos promedio y uno profesional.

Desarrollar un alto nivel de perspicacia empresarial no solo ayuda a sus habilidades en ciencia de datos, sino que también plantea oportunidades empresariales futuras. Si puede discernir posibles ideas comerciales de alto valor y desarrollar soluciones de trabajo, podrá crear fácilmente su empresa de ciencia de datos personal. La mayoría de los trabajos de ciencia de datos buscan personas como estas que puedan llevar el crecimiento de su negocio actual al siguiente nivel en el lado positivo.

Codificación

La codificación es la capacidad de hacer que las máquinas comprendan lo que está tratando de lograr a través de ella. Es una de las habilidades de ciencia de datos imprescindibles para cualquier científico de datos competitivo. Si desea mejorar sus habilidades como científico de datos para puestos de primer nivel, es imprescindible aprender a programar soluciones eficientes. A continuación, describiremos las que necesitará para obtener los trabajos de ciencia de datos mejor pagados.

habilidades de ciencia de datos para programadores

6. Programación Python

Si observa detenidamente, encontrará que Python es una de las habilidades esenciales para los científicos de datos. Python es un que ha ido ganando una inmensa popularidad gracias a sus cualidades de empoderamiento. Python permite a los científicos de datos seleccionar soluciones eficientes y productivas para sus problemas cotidianos de ciencia de datos con bastante rapidez.

Una de las habilidades de ciencia de datos más buscadas, es muy poco probable que este innovador lenguaje de programación pierda su encanto pronto. En el lado positivo, aprender Python es uno de los trabajos más fáciles si tienes experiencia previa en programación. A diferencia de los lenguajes de programación de la vieja escuela, como C y Java, Python ofrece un esquema de programación fácil de adoptar y al mismo tiempo se asegura de que la curva de aprendizaje no sea muy pronunciada.

7. Programación R

Al igual que Python, R se encuentra entre otras habilidades científicas de datos de facto que las empresas tienden a buscar en sus empleados potenciales. Se prefiere el conocimiento profundo y el dominio de este poderoso lenguaje de programación para la mayoría de los trabajos de ciencia de datos mejor pagados. Por lo tanto, le recomendamos encarecidamente que aprenda este lenguaje de programación impresionante para aumentar sus posibilidades de obtener esos trabajos respetados de ciencia de datos.

Dado que el análisis de conjuntos de datos extensos para averiguarlo, los conocimientos comerciales potenciales será una de sus tareas principales como científico de datos, el dominio de este poderoso lenguaje de programación estadística se considera una habilidad fundamental para los científicos de datos como usted. R le permite analizar datos comerciales de manera efectiva e inferir soluciones que tienen un impacto de alto nivel en el negocio. Por lo tanto, debe mejorar sus habilidades de programación en R hoy.

8. Programación SQL

Para la mayoría de los trabajos de ciencia de datos, tener la capacidad de programar usando SQL se considera una habilidad esencial para el científico de datos. SQL se usa generalmente para escribir scripts que realizan operaciones como agregar, eliminar y extraer datos de bases de datos. Es una de las habilidades más críticas de los científicos de datos para analizar y transformar esquemas de bases de datos.

Si ya a sus estudios académicos, le sugerimos que cree herramientas útiles utilizando esto. Dichas utilidades actuarán como una cartera efectiva para las calificaciones de científicos de datos cuando se presenten para una entrevista de trabajo de ciencia de datos. Para cada científico de datos, la capacidad de emplear SQL se contará entre las habilidades fundamentales de la ciencia de datos, ya que les permite comprender mejor las bases de datos relacionales y aumentará sus posibilidades de ser contratados.

Herramientas analiticas

El dominio es una de las habilidades de ciencia de datos más críticas necesarias para obtener esos trabajos de ciencia de datos bien remunerados. Estas herramientas permiten a un científico de datos analizar la enorme variedad de datos comerciales diarios y seleccionar modelos de datos eficientes para mejorar las soluciones comerciales actuales. Aunque hay una gran cantidad de herramientas de este tipo disponibles, hoy abordaremos solo las más básicas.

herramientas para analistas de datos

9. Hadoop

es una colección de herramientas de análisis de datos que ayudan a los científicos de datos a resolver problemas utilizando enormes conjuntos de datos a través de conexiones de red. Esta pila de software proporciona un marco de almacenamiento distribuido fácil de usar y facilita el procesamiento de big data con herramientas como MapReduce, SAMOA y Cassandra. Debe aprender Hadoop de manera efectiva, ya que es una de las habilidades más críticas para los científicos de datos.

Entre la extensa colección de utilidades de procesamiento de datos de código abierto que proporciona Hadoop, algunas son mucho más importantes que otras. Por ejemplo, Hive y Pig son dos software muy utilizados en la industria. Por lo tanto, un dominio fluido de esta pila de software será un gran punto de venta para usted en la mayoría de las entrevistas de trabajos de ciencia de datos. Nuestros expertos le recomiendan encarecidamente que aumente su conocimiento de Hadoop tanto como sea posible para mejorar sus habilidades actuales de ciencia de datos al más alto nivel.

10. Apache Spark

Apache Spark, uno de los más populares en la actualidad, proporciona un práctico marco de computación en clúster para mejorar sus habilidades como científico de datos. El potente motor de procesamiento de datos en memoria de Apache Spark brinda soporte para ETL, análisis, aprendizaje automático y procesamiento de gráficos incluso para los conjuntos de datos comerciales más extensos. Puede realizar tanto procesamiento por lotes como procesamiento de flujo con este poderoso software.

El soporte de API de alto rendimiento pero conciso para , incluidos Scala, Python, Java, R y SQL, hace que Apache Spark sea adecuado para su uso en una gran cantidad de proyectos. Si no solo desea mejorar sus habilidades actuales como científico de datos, sino que también desea agregar más calificaciones como científico de datos, le recomendamos encarecidamente que comience a aprender Apache Spark a partir de hoy.

11. Apache Kafka

Apache Kafka es una plataforma de software de procesamiento de flujo de alto rendimiento que permite a los científicos de datos analizar y manejar datos comerciales en tiempo real. Aprender esta herramienta puede resultar un recurso valioso para su carrera y aumentará sus calificaciones como científico de datos al siguiente nivel.

Incluso la mención de Kafka en su currículum le servirá como un fuerte argumento de venta en la mayoría de los trabajos de ciencia de datos de primer nivel que tratan con datos en tiempo real. Dado que la mayoría de las empresas de primer nivel dependen de los datos en tiempo real de una forma u otra, Kafka será útil en muchas situaciones.

Este software Apache le permite suscribirse a flujos de datos de manera efectiva y almacenarlos de manera tolerante a fallas para su procesamiento. Puede crear algunos proyectos prácticos con Kafka que construyan canalizaciones o aplicaciones de transmisión de datos en tiempo real. Esto aumentará tanto sus habilidades en ciencia de datos como la posibilidad de ser contratado exponencialmente.

Matemáticas

A diferencia de muchos trabajos de informática mejor pagados, la mayoría de los trabajos de ciencia de datos requieren un conocimiento práctico y teórico de ciertas ramas de las matemáticas. Es una de las habilidades esenciales de ciencia de datos que necesita para obtener una posición respetada en las principales organizaciones. Aunque no entraremos en la debacle de qué habilidades matemáticas son obligatorias y demás, esbozaremos una guía fácil de seguir para ayudarlo a seleccionar sus habilidades matemáticas para las calificaciones diarias de científicos de datos.

habilidades matemáticas para trabajos de ciencia de datos

12. Estadísticas

No es de extrañar que la estadística sea una de las habilidades esenciales de los científicos de datos para la mayoría de los trabajos de ciencia de datos. Es la rama de las matemáticas que se ocupa de la recopilación, organización, análisis e interpretación de datos. Es obligatorio tener un conocimiento sólido de este campo para aumentar sus posibilidades de ser contratado en una de las principales empresas de ciencia de datos.

Entre la diversa gama de temas que trata la estadística, deberá tener un conocimiento sólido de algunos temas clave, incluidas las características estadísticas, las distribuciones de probabilidad, la reducción de la dimensionalidad, el muestreo excesivo y insuficiente junto con las estadísticas bayesianas. El dominio de esta área de las matemáticas, en general, aumentará considerablemente sus calificaciones como científico de datos y dará lugar a trabajos bien remunerados.

13. Cálculo multivariable y álgebra lineal

El cálculo multivariable y el se encuentran entre esas habilidades de ciencia de datos sin las cuales no podrá realmente seleccionar las soluciones comerciales modernas. En resumen, el álgebra lineal es el lenguaje de los algoritmos informáticos, mientras que el cálculo multivariable es el mismo para los problemas de optimización.

Dado que, como científico de datos, su tarea principal será optimizar los datos comerciales a gran escala y definir soluciones para ellos en términos de lenguajes de programación. Aprender estas ramas de las matemáticas es obligatorio.

En una nota al margen, cuando usa Estadística o Aprendizaje automático, lo que simplemente está haciendo es aprovechar estas áreas de las matemáticas. Por lo tanto, le recomendamos encarecidamente que se centre en estos fundamentos matemáticos cuando ejerza sus habilidades de científico de datos para compensar las posiciones de la ciencia de datos.

14. Aprendizaje automático, aprendizaje profundo e inteligencia artificial

No es de extrañar que las empresas de hoy en día requieran que sus científicos de datos sean expertos en diferentes áreas de la inteligencia artificial como el y el aprendizaje profundo. En resumen, la inteligencia artificial define la simulación del comportamiento ‘inteligente’ en las computadoras, mientras que el aprendizaje automático y el aprendizaje profundo se refieren a subcampos dentro de la inteligencia artificial que intentan lograr comportamientos más específicos mediante la utilización de métodos más complejos.

Si le sorprende ver estos temas en la sección de Matemáticas, no lo esté. Dado que ha tenido al menos algún tipo de exposición previa a estas ideas innovadoras, debe saber que, en esencia, son matemáticas puras. Aprender los entresijos de estos conceptos avanzados aumentará sus habilidades como científico de datos y lo ayudará a destacarse de sus competidores en la mayoría de los trabajos de ciencia de datos.

15. Tensorflow

Aunque no es un subcampo de las matemáticas en sí mismo, Tensorflow se describe en esta sección debido a su relación con las habilidades avanzadas de ciencia de datos de Machine Learning. Tensorflow es una biblioteca de código abierto que permite a los científicos de datos administrar su flujo de datos y programas en una amplia gama de tareas. Se puede considerar como una biblioteca matemática simbólica.

Tensorflow se emplea para un conjunto diverso de tareas por científicos de datos profesionales, desde el análisis de datos hasta la validación de datos. Si desea eclipsar a sus compañeros en lo que respecta a trabajos de ciencia de datos bien remunerados, le sugerimos que mejore sus habilidades de Tensorflow junto con sus habilidades matemáticas.

Comunicación

Al buscar posibles científicos de datos, las empresas a menudo valoran las habilidades de comunicación por encima de muchas habilidades técnicas de ciencia de datos. Sin una comunicación fluida, los empleados generalmente no pueden mantenerse al día con la creciente demanda con la que deben lidiar las organizaciones. Si puede mostrarle a los entrevistadores que tiene excelentes habilidades de comunicación, es posible que lo prefieran a usted sobre otro candidato que tenga mayores habilidades técnicas.

habilidades de comunicación para científicos de datos

16. Trabajo en equipo

Como científico de datos, es muy poco probable que trabaje solo. En la mayoría de las empresas, habrá equipos de tamaño pequeño a mediano que se ocupan de una clase específica de problemas. El trabajo en equipo es la colaboración de varios científicos de datos para atender las necesidades comerciales de su empresa. Se encuentra entre esas habilidades esenciales de los científicos de datos sin las cuales probablemente no dejará una impresión duradera e incluso puede perder su trabajo.

Por lo tanto, al aprender todas esas habilidades esenciales para los científicos de datos, debe enfatizar el trabajo en equipo efectivo. Defina las formas correctas de abordar los problemas a sus compañeros de trabajo. Aprenda a hacer preguntas específicas y a proporcionar comentarios para aumentar sus habilidades de comunicación para trabajos de ciencia de datos.

17. Documentación

La documentación es el proceso de documentar su trabajo para que otros científicos de datos puedan comprender su enfoque de un problema en particular de manera más fácil y rápida. Es una de las habilidades de ciencia de datos más críticas que ayudará a sus compañeros a apreciar la contribución de sus proyectos.

No hay una forma definida de cómo debe documentar sus trabajos de ciencia de datos. Pero puedes aprender de lo que hacen los demás y seleccionar tu propio estilo. La documentación adecuada ayudará a otros a comprender sus soluciones y le ayudará cuando vuelva a un problema anterior después de un tiempo.

Le sugerimos que comience con enfoques simples y marque los procedimientos que ha seguido para obtener una solución al principio. Más adelante en la línea, puede comenzar a agregar más información, como por qué eligió un método específico, cómo modificarlo o reemplazarlo, etc.

Arquitectura de datos

Puede pensar en la arquitectura de datos como modelos o estándares que rigen la forma en que recopila, almacena, organiza o integra los datos comerciales. Es una de las habilidades cruciales de los científicos de datos para obtener trabajos de ciencia de datos con salarios excelentes. Si no tiene un título académico en informática, matemáticas o estadística, necesitará dedicar un tiempo considerable a aprender arquitectura de datos.

diagrama de arquitectura de datos

18. Arreglo de datos

La disputa de datos se refiere al proceso de transformación de datos de un formato a otro. Esto se usa generalmente para obtener datos útiles de listas extensas de datos desordenados, inconsistentes o desordenados. Dado que los datos inalcanzables tienen poco valor para las organizaciones, es tarea de los científicos de datos formatearlos según lo requiera el problema.

Dado que la cantidad de datos y los métodos para obtenerlos aumentan continuamente, debe tener un dominio sólido sobre las diferentes técnicas de lucha de datos para mantenerse al día. La gestión de datos es imprescindible para ayudarlo a comprender mejor sus datos y permitir que sus empleadores se beneficien de ellos. Para aumentar sus calificaciones como científico de datos, lo alentamos a que comience a aprender varios métodos de gestión de datos desde hoy.

19. Modelado de datos

El modelado de datos describe los pasos en el análisis de datos donde los científicos de datos mapean sus objetos de datos con otros y definen relaciones lógicas entre ellos. Cuando trabaje con conjuntos de datos masivos no estructurados, a menudo su primer y principal objetivo será construir un modelo de datos conceptual útil. Las diversas habilidades de ciencia de datos que caen bajo el dominio de modelado de datos incluyen tipos de entidad, atributos, relaciones, reglas de integridad y su definición, entre otros.

Este subcampo de la arquitectura de datos facilita la interacción entre diseñadores, desarrolladores y el personal administrativo de una empresa de ciencia de datos. Le sugerimos que cree modelos de datos básicos pero perspicaces para mostrar sus habilidades de científico de datos a los empleadores durante futuras entrevistas de trabajo de ciencia de datos.

20. Minería de datos

La minería de datos se refiere a métodos que se ocupan de descubrir patrones en grandes conjuntos de datos. Es una de las habilidades más críticas para los científicos de datos, ya que, sin los patrones de datos adecuados, no podrá seleccionar soluciones comerciales adecuadas con datos. Dado que la minería de datos requiere una gran cantidad de técnicas, que incluyen, entre otras, el aprendizaje automático, las estadísticas y los sistemas de bases de datos, recomendamos a los lectores que pongan gran énfasis en esta área para mejorar sus calificaciones como científicos de datos.

Aunque parece desalentador al principio, la minería de datos puede ser bastante divertida una vez que la dominas. Para ser un minero de datos experto, debe dominar temas como agrupamiento, regresión, reglas de asociación, patrones secuenciales, detección externa, entre otros. Nuestros expertos consideran que la minería de datos es una de esas habilidades de los científicos de datos que pueden hacer o deshacer su entrevista de trabajo de ciencia de datos.

Pensamientos finales

Dado que la ciencia de datos es un campo en constante evolución con mucha improvisación y optimización que se realizan todos los días, es difícil predecir qué habilidades de científico de datos son suficientes para obtener trabajos de ciencia de datos. Sin embargo, es más que posible delinear algunas habilidades de ciencia de datos que son más que suficientes incluso para los puestos más demandados.

Nuestros expertos han seleccionado 20 habilidades tan importantes para los científicos de datos a fin de ayudarlos a prepararse mejor para sus carreras en esta guía. Esperamos que haya obtenido los conocimientos necesarios para impulsar el inicio de su carrera en ciencia de datos. Permanezca con nosotros para obtener más guías de ciencia de datos de este tipo.

Leave a Comment

Your email address will not be published.